What Is Reliability Centered Maintenance?
Reliability Centered Maintenance (RCM) is a method for developing a comprehensive reliability-based maintenance and monitoring program. RCM involves analyzing the Failure Modes and Effects Analysis (FMEA) of each piece of equipment to determine criticality; then deciding the appropriate and effective proactive maintenance, operation, or engineering tasks to preserve system function. This approach is valid for and has been applied successfully in systems and units within most process industries, such as electric power generation (nuclear, fossil, hydro), transmission and distribution, petrochemical, refining, upstream, midstream, manufacturing, paper, pharmaceutical, and water and wastewater treatment. The overall purpose of performing an RCM analysis is to develop a cost-effective and applicable proactive maintenance program for the system or unit under study. The evaluation includes:
RCM has traditionally been implemented as a one-time study that follows a rigorous set of questions designed to identify the modes and effects of equipment failure and define a set of tasks to prevent or mitigate these failure modes. Equipment criticality is defined based on the consequence of the identified failure modes and tasks that were preferentially applied to the critical equipment over the non-critical equipment. These traditional RCM methodologies tend to rely on industry-accepted data and personnel experience to determine appropriate failure modes and mitigating tasks.
An enhancement to the traditional RCM process was the introduction of analyzing risk into the methodology. Risk is defined as the product of the probability of failure (PoF) and the consequence of failure (CoF). Most RCM analyses in the past 20 years have incorporated the probability of failure into the analysis to define equipment criticality by developing risk matrices for various criteria such as safety, environmental impact, production loss, financial impact, and reputation impact. An added benefit of using risk matrices is the ability to add a gradient to the level of criticality. The added levels of criticality on the risk matrices allow for an improved prioritization of the proactive tasks identified by the RCM analysis. For example, proactive tasks for high-critical equipment have a higher priority than proactive tasks for low-critical equipment.
What is the Value of Reliability Centered Maintenance?
The value of an individual Reliability Centered Maintenance (RCM) study will vary for each analysis, based on current equipment reliability, amount of change from the current proactive maintenance program, and market conditions. Typically, the value of an RCM study can be calculated over time based on increased availability, increased throughput, and/or reduced maintenance expenditures.
Implementation of the recommended tasks from the RCM study will yield the following benefits:
What is the Benefit of a Pinnacle-Facilitated Reliability Centered Maintenance Study?
Primarily, the Pinnacle RCM methodology is designed to minimize the impact on customer resources. Several companies have had a poor experience with RCM implementation due to excessive time requirements to complete the analysis of a few major pieces of equipment. Our technique allows for the analysis of an entire unit in a similar amount of time. All maintainable equipment is included in the scope of our studies. This includes fixed equipment, rotating equipment, electrical equipment, instrumentation, and actuated valves. Detailed inspection recommendations for fixed equipment and piping are deferred to a specialized Mechanical Integrity (MI) or Risk-Based Inspection (RBI) analysis. The analysis typically focuses on process equipment, but non-process equipment (HVAC, safety equipment, firefighting equipment, material handling equipment, material handling equipment, lighting) is often included in a comprehensive, proactive maintenance program.
The Pinnacle RCM process is a methodical, efficient, and common-sense approach to developing a reliability-based maintenance and monitoring program that conforms to accepted RCM standards. Each step in the process is foundational as each subsequent step presupposes completion of the steps preceding it. The basic steps in our RCM process are outlined below.
What Does the Future of Reliability Look Like?
The next enhancement to the Reliability Centered Maintenance analysis will be quantifying much of the process and using data in conjunction with traditional methods and Subject Matter Expert (SME) expertise to define failure modes and their probability of failure. This data can originate from the computerized maintenance management system (CMMS), the inspection data management system (IDMS), and rounds and readings from operations. The use of this data can improve the quality of the RCM analysis and can be used to keep the analysis evergreen over time.
Over the years, Reliability Centered Maintenance (RCM) has been a valuable method that has helped complex asset-based systems effectively maintain asset reliability through cost-effective strategies. Now, decades later, advancements in data acquisition, warehousing, modeling, and analytics are creating opportunities to improve upon the RCM model. The next leap in reliability will further improve availability while continuing to reduce maintenance spend.
An RCM program is the first step after a reactive program in the evolution of maintenance program maturity. However, regarding further optimizing and improving reliability performance, Reliability Centered Maintenance can be limiting depending on the objective. Specific limitations include the following:
Whether you are just starting to implement an RCM program or are already using a mature program, you have the necessary tools to make the next leap in reliability. This leap is being made possible through Quantitative Reliability Optimization (QRO). QRO is a method that pushes RCM to the next level by unlocking its capabilities using dynamic data analysis. Using actual asset data, QRO provides detailed insight into understanding when an asset will fail, identifying the impact each asset has on the whole system, and knowing how and when to use resources will improve the results you care about.
QRO is an approach to reliability modeling which connects every relevant reliability data point to one integrated model that enables users to do the following: