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Introduction
This article is Part 2 in a series of articles discussing condition 
monitoring optimization, which aims to provide a framework 
for quantitatively optimizing inspection scope, techniques, and 
intervals based on historical inspection data and subject matter 
expertise, while also dynamically updating the inspection plan 
to maximize reliability and return on investment (ROI) as new 
information becomes available. Using this methodology, data 
collected through inspection can be used to improve confidence 
in the asset damage state and determine when additional data is 
required, when inspection adds little or no value, or when cor-
rective maintenance is required. In Part 1 of this series, entitled 
“Condition Monitoring Optimization: Going Beyond Traditional 
CML Optimization” and published in the September/October 
issue of Inspectioneering Journal, it was assumed that inspection 
coverage and techniques were sufficient to capture the true dam-
age state of the asset. 

While the above scenario is certainly ideal, it is often not rep-
resentative of the real-world situations that are encountered in 
practice. As a specific example, inspection coverage may be lim-
ited to a fraction of the total susceptible area of an asset for a 
variety of reasons, such as inaccessibility. A radiographic testing 
(RT) scan conducted on a piping elbow, for example, generally 
captures only a single angle of the potential surface, leaving the 
inspection professional with imperfect information regarding 
degradation. Alternatively, even when an inspection does cover 
the entire area susceptible to a particular damage mechanism, the 
inspection technique utilized may not provide a 100% probability 
of detection. Consider the case of using magnetic particle inspec-
tion to identify a surface breaking crack—even when a crack is 
present, this technique may only have a 90% chance of detecting 
the crack, which leaves the inspection professional with the job of 
considering that damage may be present even when the inspec-
tion technique finds no evidence. 

Fundamentally, the industry is faced with the challenge of mak-
ing statistically meaningful inferences in the presence of limited 
or potentially erroneous data. The industry can combat this sit-
uation by using Bayesian statistical analysis, which combines 
measured inspection data with prior information derived from 
subject matter expertise or historical experience. This article will 
outline this data analysis methodology across a series of practi-
cal examples, which focus on local degradation. First, the article 
will examine the case of thinning on a piping circuit with lim-
ited inspection coverage. Second, the article will consider the case 
of local pitting on heat exchanger tubes with limited inspection 
data, as well as an imperfect probability of detecting damage 
where inspections are conducted.

Extreme Value Analysis with Limited 
Inspection Coverage

While, ideally, one would like to inspect 100% of the susceptible 
area for any type of damage, such a comprehensive inspection is 
often either cost-prohibitive (e.g., scanning a large surface area in 
its entirety) or impossible (e.g., portions of the asset are inacces-
sible). In such a scenario, one is faced with making an inference 
about an asset given limited inspection data. In the case where 
damage is detected using the limited inspection, one can take 
action to remedy the situation. However, what options exist when 
no evidence of damage is detected? One can assume that there is 
no severe damage on the asset, but must also consider the possi-
bility that there is significant damage that has simply not been 
detected due to the limits in inspection coverage. Ultimately, it’s 
important to quantifiably answer the following question: What is 
a reasonable estimate of the damage state of the asset given the 
data that has been collected?

To provide statistically valid answers to this question, one can 
make use of methods such as extreme value analysis (EVA). A 
full description of EVA is beyond the scope of this article, how-
ever D. Benstock and F. Cegla prepared an introductory treatment 
of EVA related specifically to non-destructive inspection in their 
2017 article “Extreme value analysis (EVA) of inspection data and 
its uncertainties”[1]. This article will review EVA using a specific 
example involving a piping circuit. In this example, assume that 
the piping circuit is inspected with an automated ultrasonic 
testing (AUT) technique, and the pipe can be divided into condi-
tion monitoring locations (CMLs) where each CML corresponds 
to one continuously scanned “AUT band” of the pipe. Each AUT 
inspection scans a single CML of the pipe and collects the thick-
ness data at various locations within the CML. As is customary 
in the industry, however, an inspector typically records only the 
lowest thickness value for each CML. The minimum thickness 
data is used to calculate degradation rates to serve as the basis 
for any inspection program including a risk-based inspection  
(RBI) program.

Assume that the inspector has conducted an AUT scan over some 
smaller number of the available CMLs and has recorded the lowest 
thickness measurements for each of the CMLs. The objective now 
is to estimate the minimum thickness on the remaining unin-
spected CMLs given data collected from the inspected CMLs. For 
example, there are 100 potential AUT CMLs, of which the inspec-
tor has sampled only ten CMLs. For this example, the measured 
data at each CML comes from the bi-modal distribution shown 
in Figure 1 (left). Each mode of this distribution corresponds to 
a location experiencing either general thinning with a relatively 
low degradation rate (say, 3 mils/year) or an area experiencing 
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local degradation at a higher degradation rate (say, 10 mils/year). 
The AUT scanner collects a total of 100 measurements at each 
CML and the inspector records the minima for each (ten total 
minimum thickness readings). 

The results of applying a standard EVA analysis are shown in 
Figure 1 (right). The resulting distribution provides a reason-
able fi t to the inspection data (measured data generally lies very 
close to distribution curve). From this distribution, the expected 
minimum thickness that would be observed on the remaining 
90 CMLs of interest is calculated. In this case, the EVA analy-
sis predicts a minimal thickness of 335 mils (shown by the red 
dashed lines), which is reasonable and matches what is expected 
given what is known about the true thickness distribution for 
this circuit.

The previous example included a CML where local thinning was 
present, which ultimately enabled the standard EVA analysis to 
make reasonable predictions about future behavior on the unob-
served portion of the piping circuit. However, given the low prev-
alence of local thinning on this circuit, it is quite possible that the 
collected inspection data might have only encountered general 
thinning and no local thinning. In this scenario, a traditional EVA 
will be overfi t to the observed data and ultimately fail to predict 
the extreme minimal thickness that was observed previously 
even though our prior expectation is that such a low thickness is 

indeed very likely to occur. This overfi tting scenario is shown in 
Figure 2 (left). While the EVA fi t to our observed data is extremely 
good, the resulting prediction over the remainder of the circuit 
is far too optimistic given our prior expectations about the pres-
ence of local thinning. This has been one of the primary chal-
lenges in the application and acceptance of EVA in the mechanical 
integrity industry.

One can combat this problem by exploiting Bayesian statistical 
methods[2]. Applied to inspection, Bayesian methods combine 
prior subject matter expert (SME) knowledge with measured 
inspection data in order to provide a more robust estimate of 
the damage state of the asset. In our local thinning example, 
Bayesian EVA assumes a prior distribution on the parameters of 
the EVA distribution itself. The selection of this prior information 
is guided by mechanical integrity and corrosion engineer SMEs 
who would utilize experience along with historical inspection 
and process data to inform the model of what would be possi-
ble for the given asset. An example analysis using Bayesian EVA 
using the same data as the previous example where no local thin-
ning was observed directly is shown in Figure 2 (right). With 
suitable prior information, the EVA still predicts the possibility of 
local thinning given the very small amount of data that was col-
lected. It is important to note that if SMEs were to continue to col-
lect data using highly effective inspection techniques on a greater 

Figure 1. Left: The true thickness distribution minima for each CML of the pipe. Right: The cumulative distribution function 
for the EVA distribution with sample points (blue) and the projection of the minimal thickness for the remaining 90 CMLs 
on the piping circuit (red dashed lines). The EVA distribution fi ts reasonably well with the data and the resulting inference 
regarding the expected minimal thickness is reasonable.

Figure 2. Left: A standard EVA fi t on data where no local thinning was observed. The fi t to the data is extremely good but 
ultimately skews the prediction of minimal thickness since no local thinning has been observed. Right: Bayesian EVA fi t to 
the data. The fi t to the observed data is poorer but the prior information ultimately aids in predicting a much more realistic 
expectation on the true thickness minima for the circuit.
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portion of the susceptible area and continued to fi nd only general 
degradation, the Bayesian EVA would ultimately reject the prior 
and begin to fi t more closely to the observed data. 

This example highlights both the value and importance of com-
bining SME knowledge with data science to utilize all available 
information and more accurately estimate the damage state of 
the asset and improve the assessment of probability of failure and 
risk. Additionally, this approach can be used to select the inspec-
tion techniques, defi ne the scope of the inspection, and determine 
the inspection intervals to optimize the inspection plan. The opti-
mized inspection plan for a given asset provides the data required 
to dynamically update the model as new information is available, 
such as changes in operating conditions.

Dealing with Imperfect Inspection 
Techniques
In the previous example, inspection coverage was limited to 
a small percentage of the entire susceptible area of the asset. 
However, it was assumed that the measurement data itself was 
accurate and that, for example, local thinning would be detected 
if it was present in the given inspection CML. This, however, is 
not always the case in practical situations, where the utilized 
inspection techniques may have some probability of failing to 
detect damage even if damage is present. 

The next scenario explored in this article uses data collected from 
a heat exchanger tube bundle. This exchanger consists of 154 
tubes, of which 44 have been inspected for evidence of pitting. 
However, the ability to detect pitting in any given tube is imper-
fect. Concretely, assume that an inspector examining a tube with 
pitting using pulsed eddy current (PEC) will only detect the pit-
ting with a probability of 0.7 (70%). Of the 44 tubes inspected, the 
inspector identifi es pitting in four tubes. Given this data, we wish 
to estimate how many of the remaining 110 tubes in the popula-
tion are likely to have pitting. 

As in the case of the EVA example, it is assumed that a Bayesian 

analysis has been performed for the tubes affected by pitting. 
Based on experience and prior inspection history, it is expected 
that, on average, one out of every 100 tubes will experience pitting. 

Figure 3 shows the output of the analysis. The probability that no 
pitted tubes remain is 0.45. More than likely, there are additional 
tubes with pitting beyond the four that have been detected. 

The above example assumes that an inspection has already been 
conducted and, after having obtained some data, the problem of 
interest was in estimating the damage state of the uninspected 
portion of the asset. 

The methodology applied can also be used for future inspection 
planning. Assume now that, during inspection planning, one 
wishes to know the number of tubes that must be inspected such 
that, if no damage is detected, the entire tube population can be 
declared defect-free. Figure 4 demonstrates the result where the 
confi dence (probability) of the entire population of tubes is defect 
free given that SMEs have inspected a given number of tubes and 
found no evidence of damage. 

Depending on the level of confi dence that is required, one can 
determine the optimal number of tubes to inspect. If the actual 
inspection results are different than the expected damage, addi-
tional sampling will be needed to achieve the desired level of con-
fi dence that can be calculated, and for inspection to be completed 
in real time.

Conclusion
This article considers the problem of accurately characterizing 
the damage state of an asset experiencing local degradation in 
cases where:

A.  inspection is conducted on a subset of the total area, or 

B.  when the inspection technique has some probability of failing 
to detect damage when damage is present. 

In these situations, statistical inference techniques on the 

Figure 3. Probability distribution of the remaining pitted tubes 
for a heat exchanger. The probability that no pitted tubes remain is 
only 45%, meaning that SMEs would likely fi nd more pitting if they 
continued to inspect.

Figure 4. The confi dence level that all tubes are free of pitting 
given an error-free inspection for a subset of tubes. For this case, 
90% confi dence of no pitting in the population requires inspecting 
85 tubes without any evidence of damage. To obtain 95% confi dence 
we must inspect 125 tubes.
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measured data can be utilized to provide reasonable expecta-
tions regarding the true extent of damage on the asset. When 
SME knowledge is available, Bayesian statistical methods can be 
utilized to provide a more robust estimation, which is especially 
important when damage is hard to detect. This article demon-
strated that a Bayesian framework can overcome previous chal-
lenges in applying EVA type analyses, and statistical analysis in 
general, to local degradation.

It is important to note that while statistical techniques can greatly 
aid our understanding of asset degradation, they are not meant 
to be used in isolation from corrosion and mechanical integrity 
subject matter expertise. Rather, the techniques and methodology 
proposed here are meant to complement the work of the SMEs 
and provide deeper insights into the inspection data collected as 
part of their reliability program. As a concrete example, SMEs will 
have ideally identified the potential damage mechanisms and 
susceptible areas for each mechanism prior to performing the 
EVA methodology described here. By treating each susceptible 
area in isolation, the resulting goodness-of-fit for the EVA distri-
bution to the inspection data will improve dramatically and pro-
vide far more reliable (and stable) inference results. 

Future use cases of condition monitoring optimization will 
explore scenarios where similar principles are applied to damage 
modes of cracking, an optimized inspection plan is developed 
based on condition monitoring optimization, and how facilities 
can use real-time process data and integrity operating windows 
(IOWs) to update the expected remaining life, risk, and inspection 
plan of their assets. This series will highlight where and how to 
apply data analytics to improve inspection programs so that they 
effectively manage both risk and cost, as well as the importance of 
integrating SME knowledge and expertise with data analytics to 
provide a more complete understanding of asset degradation and 
enable smarter reliability decisions. n

For more information on this subject or the author, please email 
us at inquiries@inspectioneering.com.
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